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We introduce Hardy spaces of solutions to the so-called real Beltrami equation in the disk:
∂ f = ν(z)∂f , where −1 + ε < ν < 1 − ε and ν is Lipschitz continuous. Dwelling on some
work by Bers and Nirenberg on pseudo-analytic functions, we prove the Lp boundedness of the
conjugation operator mapping u to v if f = u+ iv on the circle, and f has real mean. We also
show the density of such functions on strict subarcs of the circle. This allows us to consider
bounded extremal problems in such classes of functions. A motivation for such a study comes
from the fact that the compatibility condition for f = u + iv to solve the Beltrami equation is
that div(σ∇u) = 0 where σ = (1−ν)/(1+ν). This way, extremal problems arising for solutions
to diffusion equations cans be recast in terms of pseudo-analytic functions. We exemplify this
in the case of an inverse boundary problem arising in plasma control.
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3 ièmes journées Approximation 15-16 Mai Lille

It is a well-known classical result that the zeros of orthogonal polynomials of adjacent degree
are interlacing. We discuss the extent to which the interlacing of zeros can be proved in many
different situations where orthogonal polynomials, particularly classical orthogonal polynomials,
are involved.

The zeros of polynomials of the same or adjacent degree from different orthogonal sequences
may or may not interlace and we give proofs (or counter-examples where appropriate) for the
one-parameter families of Laguerre and Gegenbauer polynomials, as well as the two-parameter
family of Jacobi polynomials. In these cases, the different sequences are generated by allowing
the parameter(s) to vary continuously and/or in integer steps.

We review related results for the interlacing of zeros of linear combinations of classical orthogonal
polynomials, including those that arise as a result of quasi-orthogonality.

We conclude with a discussion of an open question raised by F Marcellan in 2007 concerning the
conditions under which linear combinations of orthogonal polynomials from distinct orthogonal
sequences are themselves orthogonal.
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Statistical properties of eigenvalues of random matrices taken from a probability measure

1
Zn

exp (−nTrV (M)) dM, V is a polynomial,

defined on the space of n × n Hermitian matrices M can be fully analyzed using orthogonal
polynomials. In this way an almost complete picture has arisen about the possible limiting
eigenvalue behaviors as n→∞, both in the macroscopic and microscopic regimes.

The coupled random matrix model is a probability measure

1
Zn

exp (−nTr(V (M1) +W (M2)− τM1M2)) dM1dM2

defined on pairs (M1,M2) of n × n Hermitian matrices. Here V and W are two polynomial
potentials and τ > 0 is a coupling constant. The model is of interest in 2D quantum gravity
where it is used to construct generating functions for the number of bicolored graphs on surfaces.

The role of orthogonal polynomials is now taken over by two sequences of polynomials
(
p
(n)
j

)
j

and
(
q
(n)
k

)
k

that satisfy the biorthogonality condition∫ ∞

−∞

∫ ∞

−∞
p
(n)
j (x)q(n)

k (y)e−n(V (x)+W (y)−τxy)dxdy = δj,k.

Statistical properties of the eigenvalues of M1 are described by the polynomials p(n)
j . Despite

many contributions in the physics literature, the limiting behavior is not fully understood in the
mathematical sense.

In the talk I will discuss an approach to the simplest non-trivial case W (y) = 1
4y

4, which involves
the following steps:

• A characterization of the polynomials p(n)
j as multiple orthogonal polynomials, which leads

to the formulation of a 4× 4 matrix valued Riemann-Hilbert problem.

• An energy minimization problem for a triple of measures (µ1, µ2, µ3) where µ1 is the
asymptotic zero distribution of the polynomials p(n)

n as well as the limiting eigenvalue
distribution of M1.

• The steepest descent analysis of the Riemann-Hilbert problem.

This is joint work with Maurice Duits.
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A function is called exponential-like with respect to a difference operator if it satisfies

Df(x) = a[f(ψ(x)) + f(φ(x))],



where the (divided) difference operator is

Df(x) = [f(ψ(x))− f(φ(x))]/[ψ(x)− φ(x)].

The functions φ and ψ define the setting of the theory, from the most elementary choice (x, x+h)
to forms R(x) plus or minus square root of S(x), where R and S are rational functions of degrees
up to 2 and 4. Remark that the difference equation is a symmetric combination of the two
conjugate algebraic functions φ and ψ. The difference equation is also a recurrence relation
on a lattice built from y(n) = φ(x(n)), y(n + 1) = ψ(x(n)), from which x(n + 1) is found
through y(n + 1) = φ(x(n + 1)). When the degrees ofR and S are 2 and 4, we get a so-called
elliptic lattice, or grid, as x(n) and y(n) appear to be elliptic functions of n (Baxter, Spiridonov,
Zhedanov). The exponential-like function of above is interpolated on such a lattice y(0), y(1), ...
by rational functions with poles on a well-chosen sequence y′(0), y′(1), ...
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We study a model of n non-intersecting squared Bessel processes in the confluent case: all paths
start at time t = 0 at the same positive value x = a, remain positive, and are conditioned
to end at time t = T at x = 0. In the limit n → ∞, after appropriate rescaling, the paths
fill out a region in the tx-plane that we describe explicitly. In particular, the paths initially
stay away from the hard edge at x = 0, but at a certain critical time t∗ the smallest paths
hit the hard edge and from then on are stuck to it. For t 6= t∗ we obtain the usual scaling
limits from random matrix theory, namely the sine, Airy, and Bessel kernels. A key fact is that
the positions of the paths at any time t constitute a multiple orthogonal polynomial ensemble,
corresponding to a system of two modified Bessel-type weights. As a consequence, there is a
3× 3 matrix valued Riemann-Hilbert problem characterizing this model, that we analyze in the
large n limit using the Deift-Zhou steepest descent method. There are some novel ingredients
in the Riemann-Hilbert analysis that are of independent interest.

This is a joint work with A.B.J. Kuijlaars and F. Wielonsky
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Let us consider an (N + 1)-dimensional space E of sufficiently differentiable functions. Roughly
speaking, design in the space E refers to the possibility of drawing a curve with a prescribed
approximate shape, fixed by a polygonal line with (N + 1) vertices, called its control polygon.
The curve is expected to mimic its control polygon of which it should be a smooth version. Here,



interpolation in the space E refers to Hermite interpolation, i.e., the possibility of determining
a unique element in E with (N + 1) prescribed values for this element itself and its successive
derivatives at given points, called interpolation abscissæ. The present talk surveys the strong
links existing between the latter two topics which may a priori seem completely disconnected.

As is well-known, both interpolation and design are possible when E is the degree N polynomial
space PN . It is the fact that any non-zero polynomial of degree at most N vanishes at most
N times, counting multiplicities, which permits interpolation in PN . It is the presence of the
Bernstein basis

BN
i (x) :=

(
x− a

b− a

)i(b− x

b− a

)N−i

, 0 ≤ i ≤ N,

with all its interesting properties, which makes design possible in PN . Now, the actual underlying
reason explaining both existence and properties of this special basis is the presence of blossoms
in the space PN . Indeed, any polynomial F ∈ PN uniquely blossoms into a function f of N
variables meeting the following three requirements:

(i) f is symmetric,

(ii) f is affine in each variable,

(iii) f gives F by restriction to the diagonal.

The function f is called the blossom of F . Blossoms are wonderful tools for design, for they
make the description of all design algorithms extremely simple and elegant.

Nevertheless, as degree grows, both polynomial interpolation and polynomial design quickly turn
to be only theoretical possibilities. Indeed, the mimicking of the control polygon becomes not
good enough, while interpolating polynomials may have nonsensical behaviour. For this reason,
when N is not small, it is way more reasonable to replace the polynomial space PN by an (N+1)-
dimensional space of polynomial splines, i.e., functions which are piecewise polynomials, two
consecutive pieces joining with precribed smoothness at the corresponding knot. For instance,
the most commonly used ones, cubic splines, are C2 and have pieces of degree 3.

Polynomial spline spaces are excellent for design due to the presence of B-spline bases and to
their properties. Among them, let us mention the fact they have small supports, which permits
a local control of the spline curves. Now, again their existence as well as their interesting
properties are actually due to the underlying presence of blossoms: each spline S with degree n
pieces uniquely blossoms into a function s of n variables, called its blossom, meeting the same
requirements as previously, except that it is defined only on a restricted set of n-tuples.

In a polynomial spline space, interpolation is possible only provided that the interpolating ab-
scissæ and the knots of the spline space interlace according to the so-called Schoenberg-Whitney
conditions. Again, the fact that interpolation under Schoenberg-Whitney conditions is possible
is related to the existence of B-spline bases. Therefore, one can say that it is implicitly related
to the existence of blossoms.

Although way much better than the polynomial case, interpolation by polynomial splines still
presents some flaws: unfortunately, we may still have undesired oscillations, in particular in
case there is a jump in the data. This is often referred to as Gibbs phenomenon. In order to
make up for this inconvenience, a classical idea consists in introducing shape parameters, i.e.,



some parameters on which we can play to improve the interpolating curve (or function) where
necessary while keeping its general shape. In spline spaces, there are two main ways to generate
such parameters. One can

1- either insert connection matrices at the knots, the usual smoothness being replaced by a
geometrical one – this generates geometrically continuous polynomial splines;

2- or replace the polynomial space in which splines have their sections by a Chebyshev space of
the same dimension. For instance one can replace the polynomial space P3 by the space spanned
by the four functions 1, x, coshx, sinhx.

Our (N + 1)-dimensional initial space E is a Chebyshev space if any non-zero element vanishes
at most N times, counting multiplicities. Such spaces are thus exactly the spaces in which
interpolation is possible. What about design? It is possible in an (N + 1)-dimensional space
E which contains constants if and only if it possesses Bernstein type bases, or if and only if it
possesses blossoms, now defined in a geometrical way by means of intersections of osculating
flats : any F ∈ E then blossoms into a function f of n variables satisfying the two properties
(i) and (iii) above, and a modified poperty (ii). Interpolation and design are strongly linked:
design is possible in E iff interpolation is possible in the space DE , i.e., iff the space DE is
a Chebyshev space. In any associate spline space S with ordinary smoothness at the knots,
blossoms automatically exist. This permits both design in S (existence of B-spline type bases)
and interpolation under Schoenberg-Whitney conditions.

Mixing the two ideas above, one can eventually consider the general framework of splines with
sections in different Chebyshev spaces, and with connection matrices at the knots. Unfortu-
nately, blossoms do not always exist in a space S of such splines supposed to contain constants.
Nevertheless, their existence is the necessary and sufficient condition which makes possible either
design in S or interpolation under Schoenberg-Whitney conditions in DS.

Unfortunately, it is quite difficult to find whether or not blossoms exist in such a general context.
Sufficient conditions do exist, but they are sometimes far too restrictive. In the interesting case
of splines with simple knots and sections in four-dimensional spaces, we managed to find explicit
necessary and sufficient conditions for existence of blossoms. We use them to illustrate how to
use the many shape parameters we have at our disposal either for design, or for interpolation,
or - why not - for interpolating design.
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Given a matrix or an operator T with eigenvalues λj , j ≥ 1, we say that the inversion problem
for functions (polynomials) in T is well posed if the norm of f(T )−1 can be bounded in terms
of minj |f(λj)| = δ > 0 for every f such that ‖f(T )‖ ≤ 1.

(1) We give a criterion for such a well posedness in terms of the so-called (Carleson-like)
Weak Embedding Property for σ = (λj) and give many examples of the spectra satisfying (or
not) this condition (joint result with P.Gorkin and R.Mortini).



(2) Moreover, given a constant 0 ≤ δ1 ≤ 1 we show that there exist (infinite) spectra σ
such that the above inversion problem is well posed for all δ with δ1 < δ ≤ 1 and ill posed for
all δ with 0 < δ < δ1 (joint result with V.Vasyunin).

(3) Finally, we use these results for disproving an analog of the paving conjecture for
Hilbert space unconditional block-bases (for Hilbert space unconditional bases, this conjecture
is equivalent to the famous Kadison-Singer problem).
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An integral representation for Euler’s constant is

γ =
∫ ∞

0

(
1

1− e−t
− 1
t

)
e−t dt. (1)

If we substitute the integrand
(

1
1− e−t

− 1
t

)
by some rational fraction of degre (n,m), (n ≥

m−1) involving Padé approximants, then γ is approached by a linear combination of logarithm
function log(k + 1) and Zeta values, ζ(i), i = 1, n, where k is some parameter.

If k = 0 and n = m−1, this is reduced to a linear combination of odd zeta values with coefficients
in Q. Arithmetical properties of this expansion are proved.

Moreover, from the properties of the remainder, an integral representation of the Euler constant
is given.

The same method applied to another expression of γ permit to recover Sondow or Pilehrood
formulas.
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Interpolation series theory (i.e., expansion of entire functions in series of polynomials where the
roots of the polynomials belong to a fixed set of C) played an important role in diophantine
approximation at the beginning of the 20th century. In particular, it was used by Pólya [6] when
he proved that the function 2z is the (non polynomial) entire function of smallest growth which
sends N in Z. The transcendence of eα for any algebraic number α 6= 0 (Hermite-Lindemann
theorem) was also obtained by Siegel [8] by expanding exp(z) at suitable interpolation points.

Interpolation methods were crucial in Gel’fond’s proof the transcendence of eπ (see [3]): this
was a first step towards the proof of Hilbert’s 7th problem that αβ is transcendental when



α, β are algebraic numbers, with α 6= 0, 1 and β irrational. Despite some works by Boehle [2],
Kuzmin [4] and Siegel [8] for example, interpolation methods were replaced by more powerful
(but less explicit) methods based on auxiliary functions contructed using Siegel’s lemma.

The aim of my talk is to report on my recent work [7], in which I show how another kind
of interpolation process can be used in irrationality theory. More precisely, I show that the
irrationality of log(2), ζ(2) and ζ(3) (Apéry’s theorem [1]) can be obtained by expanding the
Hurwitz zeta function ζ(s, z) =

∑∞
k=1 1/(k + z)s or related functions in interpolation series

of rational functions (not only polynomials). Such an interpolation process was first studied
by René Lagrange [5] in 1935 when the degree of the numerators and denominators of the
rational summands are essentially equal. For example, using certain of his formulae, I proved
the following result.

Theorem 1 (Rivoal, 2006). For all z ∈ C \ {−1,−2, . . .}, we have that

ζ(2, z) =
∞∑

n=0

A2n
(z − n+ 1)2n

(z + 1)2n
+

∞∑
n=0

A2n+1
(z − n+ 1)2n

(z + 1)2n

z − n

z + n+ 1
,

where A0 = ζ(2) and, for all n ≥ 0,

A2n+1 =
2n+ 1

2πi

∫
Cn

(x+ 1)2n
(x− n)2n+1

ζ(2, x) dx ∈ Qζ(3) + Q

and

A2n+2 =
2n+ 2

2πi

∫
Cn

(x+ 1)2n
(x− n)2n+1

x+ n+ 1
x− n− 1

ζ(2, x) dx ∈ Qζ(3) + Q.

The curve Cn encloses the points 0, 1, . . . , n but none of the poles of ζ(2, z).

(By definition, (u)0 = 1 and (u)m = u(u+1) · · · (u+m−1) for m ≥ 1.) The irrationality of ζ(3)
is a corollary of this theorem. Indeed, by the residue theorem, it is easy to compute explicitely
the coefficient An and to deduce that

d3
nAn = unζ(3)− vn ∈ Zζ(3) + Z

where dn = lcm(1, 2, . . . , n). Furthermore, from the integral representation of An, we obtain that

lim sup
n→+∞

(d3
nAn)1/n ≤ e3(

√
2− 1)4 < 1.

Since ζ(2, z) is not a rational function of z, we necessarily have An 6= 0 for infinitely many n
and the irrationality of ζ(3) is proved.

One can also obtain the irrationality of log(2) by René Lagrange’s interpolation but I don’t
know if it is possible to obtain that of ζ(2) by these means. Instead, I found new interpolation
formulae which enabled me to use rational functions with unequal degrees for the numerators
and denominators. The irrationality of ζ(2) is then a consequence of the following theorem. By
a slight abuse of notations, let

ζ(1, z) =
∞∑

n=1

(
1
n
− 1
n+ z

)
.



Theorem 2 (Rivoal, 2006). For all z ∈ C \ {−1,−2, . . .}, we have

ζ(1, z) =
∞∑

n=0

An
(z − n+ 1)2n

(z + 1)n
+

∞∑
n=0

Bn
(z − n+ 1)2n

(z + 1)n

z − n

z + n+ 1

where A0 = B0 = 0 and, for all n ≥ 1,

An =
1

2πi

∫
Cn

(x+ 1)n(x− n)
(x− n)2n+1

ζ(1, x) dx ∈ Qζ(2) + Q

and
Bn =

2n
2πi

∫
Cn

(x+ 1)n

(x− n)2n+1

ζ(1, x) dx ∈ Qζ(2) + Q.

The curve Cn encloses the points 0, 1, . . . , n but none of the poles of ζ(1, z).
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[5] R. Lagrange, Mémoire sur les séries d’interpolation, Acta Math. 64 (1935), 1–80.
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We investigate the asymptotic behavior of polynomials orthonormal over regions G in the com-
plex plane with respect to area measure (Bergman poly- nomials) in the case when G = ∪N

j=1Gj

consists of the finite union of N ≥ 2 mutually exterior Jordan domains. Our results concern
the limiting behavior of the zeros of these polynomials as well as fine estimates for their leading



coefficients. We also discuss a technique for the reconstruction of the component domains Gj

from the area moments over G.

(Joint work with B. Gustafsson, M. Putinar and N. Stylianopoulos.)
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In many applications one needs rational approximations on the negative axis R− of the expo-
nential function or a function of similar type. In our talk we consider rational best approximants
r∗n,n+k = r∗n,n+k(f,R−; ·) ∈ Rn,n+k of a given function f on R− in the uniform norm.

After a short review of characteristic properties of such approximants (the ′1/9′−problem and
related asymptotic considerations), we concentrate on numerical methods for their calculation.
In the literature one finds two approaches for practical use: One is based on AAK approximation
after the problem has been transformed from R− onto the unit circle, and the other one has the
Remez algorithm as its core piece.

We will describe a new variant of the algorithm. One of its main features is the exploitation of
structural properties of the rational best approximants r∗n,n+k, another one is the use of specific
knowledge of the asymptotic behaviour of the error function.


